Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide.
نویسندگان
چکیده
To study the initial chemical events related to the detonation of triacetonetriperoxide (TATP), we have performed a series of molecular dynamics (MD) simulations. In these simulations we used the ReaxFF reactive force field, which we have extended to reproduce the quantum mechanics (QM)-derived relative energies of the reactants, products, intermediates, and transition states related to the TATP unimolecular decomposition. We find excellent agreement between the QM-predicted reaction products and those observed from 100 independent ReaxFF unimolecular MD cookoff simulations. Furthermore, the primary reaction products and average initiation temperature observed in these 100 independent unimolecular cookoff simulations match closely with those observed from a TATP condensed-phase cookoff simulation, indicating that unimolecular decomposition dominates the thermal initiation of the TATP condensed phase. Our simulations demonstrate that thermal initiation of condensed-phase TATP is entropy-driven (rather than enthalpy-driven), since the initial reaction (which mainly leads to the formation of acetone, O(2), and several unstable C(3)H(6)O(2) isomers) is almost energy-neutral. The O(2) generated in the initiation steps is subsequently utilized in exothermic secondary reactions, leading finally to formation of water and a wide range of small hydrocarbons, acids, aldehydes, ketones, ethers, and alcohols.
منابع مشابه
A New Sensitivity Study of Thermal Stress Distribution for a Planar Solid Oxide Fuel Cell
Converting chemical energy into electricity is done by an electro-chemical device known as a fuel cell. Thermal stress is caused at high operating temperature between 700 oC to 1000 oC of SOFC. Thermal stress causes gas escape, structure variability, crack initiation, crack propagation, and cease operation of the SOFC before its lifetime. The aim of this study is to presen...
متن کاملAn ab initio molecular dynamics study of thermal decomposition of 3,6-di(azido)-1,2,4,5-tetrazine.
Ab initio molecular dynamics simulations were performed to study the thermal decomposition of isolated and crystal 3,6-di(azido)-1,2,4,5-tetrazine (DiAT). During unimolecular decomposition, the three different initiation mechanisms were observed to be N-N2 cleavage, ring opening, and isomerization, respectively. The preferential initial decomposition step is the homolysis of the N-N2 bond in th...
متن کاملA Continuum Model For Stone-wales Defected Carbon Nanotubes
In this paper, a continuum model is proposed so that a Stone-Wales (SW) defected carbon nanotube (CNT) is replaced by an initial circumferential crack in a continuum cylindrical shell. For this purpose, the critical energy release rate and then the fracture toughness of a defected CNT are calculated using the results of an existing atomistic-based continuum finite element simulation. Finally, t...
متن کاملPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
متن کاملThermal Design Considerations and Performance Evaluation of Cryogenic Tube in Tube Heat Exchangers
Heat exchangers are the most important equipment in refrigeration processes. Design and modeling of heat exchangers operating at low temperatures are different from other regular heat exchangers. This study includes two sections. In the first section, design and modeling considerations needed for evaluating the real thermal behavior of heat exchangers at low temperatures were discussed. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 127 31 شماره
صفحات -
تاریخ انتشار 2005